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Abstract

We present an efficient novel-pose and view synthesis model that can be used in

downstream tasks such as virtual reality video conferencing systems. The system

uses input from a standard webcam, and then generates different perspectives of

the person in front of the camera. This enables the creation of a virtual round table

with photo-realistic human avatars with minimal hardware requirements. While

prior work on non-rigid scenes primarily deals with fixed-length videos, we adapt

the architecture of neural radiance fields to deal with previously unseen facial

expressions in video streams. To achieve the required real-time performance, we

propose a simple preprocessing stage during training and inference which relies on

existing priors to optimize ray sampling. By isolating the face region and using

the head as a frame of reference, we reduce motion, allowing us to perform ray

marching more efficiently. We compare our results against existing methods, as

well as very recent advances from August.



1 | Introduction

The most important thing in communication is

hearing what isn’t said.

Peter Drucker

The human species is a social one; we live in communities, help each other

when in need, develop and maintain lifelong friendships or romances. At the

same time, as a species that has settlements in every continent of the world,

it is unsurprising that our attempts at long-distance communication go far

back. With the invention of the first electric telegraph in the 18th and 19th

century [1], a milestone was reached.

While the transmission of discrete electrical signals was relatively straightfor-

ward, the encoding and decoding of sound into/from electrical signals was its

own challenge. A few years later, on March 10, 1876, Alexander Graham Bell

then made the first telephone call [2]. It was not much later that there was

was in interest in not just hearing the person but also seeing them. However,

the cameras for live video transmission did not exist yet.

Shortly after the first video cameras became commercially available, AT&T

invented the first two-way video conferencing system in 1931, connecting two

offices, but it wasn’t until 51 years later that Compression Labs released the

first commercial group video conferencing system; next to upfront investment

costs of $250,000 for hardware that took up an entire room, calls cost $1,000

/ hour [3, 4]. Today, especially since the COVID-19 pandemic, we take
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Figure 1.1: Holoportation: the augmented reality system brings two separate
people into the same physical room. The system consists of eight carefully
calibrated RGB-D cameras. Credits: Microsoft

video conferencing for granted. High-speed internet connectivity allow us to

communicate with close ones or business partners - (often) for free, in color

and in 4k resolution.

Now, what could long-distance communication look like 5 years from now?

Communication is not just about words, nor is it just about our facial ex-

pressions. It includes our posture, whether we look a person in the eye or

not, and whom we give our attention in what way1. A first idea was given

by Microsoft through the Holoportation project [5] by connecting a parent

and their daughter across two rooms in augmented reality (see figure 1.1).

1.1 Motivation and Relevance

In order to move away from a flat grid-aligned representation of faces in a

video call, and towards a more immersive representation, we need means of
1Looking further down the line, it may also include the choice of cologne or perfume,

the smell of a freshly cooked meal, a comforting hug for friends or family, or a hand shake
with a business partner. These types of sensory transmissions are unfortunately out of
scope for this project, but paint a picture of what digital communication could look like.
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digitally capturing not just an image but the geometry, color and lighting of a

person and scene. This procedure needs to run in real-time, with low latency

and, in order to be adapted by wider audiences, require minimal additional

or specialized hardware.

Scanning and reconstructing 3D models of our environment has been a long-

standing area of interest in the Computer Graphics domain, and still an active

area of research due to its relevance for academia and industry. Applications

for accurate digitized assets of the real-world are numerous, and include assets

for video games and movies, architecture, agriculture and farming, scene

reconstructions for forensic sciences, faster and easier access to archaeological

sights or objects, as well as threat detection and path planning for safer

autonomous driving. A branch of research deals specifically with the realistic

reconstruction of human avatars - be it for video games, or future applications

in video conferencing.

Realism in real-time settings is still an active area of research and suffers from

many issues. Using classical computer graphics methods, modelling realistic

hair is a challenge due to the high-level of geometric detail required, even

without simulating hair flow. Next, the material properties of the skin need to

be captured accurately, and will differ from person to person. While classical

real-time computer graphics has advanced tremendously in this regard as

seen by the realism in current video games in figure 1.2, they are also hand-

crafted characters that can each take weeks to create2. Furthermore, they

can still be recognized as digital models - every so small fine detail needs to

be manually implemented, and the scope of physically accurate rendering is

restricted by computational capacity.
2Based on a character creation tutorial length [6]. May differ for AAA video games.
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Figure 1.2: Realistic characters in current video games are carefully crafted
3D models. From left to right: Red Dead Redemption 2 (2018), The Last of
Us Part II (2020), Forspoken (2023)

Due to these challenges, existing virtual reality conferencing software, such as

MeetInVR, Meta’s Horizon Workrooms and Microsoft Mesh only use simple

3D avatars instead of 3D scans and do not aim for photo-realism [7–9].

In 2020, a significant step towards neural rendering was made with the in-

troduction of neural radiance fields (short: NeRF). The problem of photo-

realism of (reconstructed) digital assets, including manually editing material

and lighting parameters, was replaced by reformulating the problem, solving

it top-down rather than bottom-up by having a neural network model these

parameters implicitly.

Performance improvements in this field have motivated the use of neural

rendering techniques for 3D/VR video conferencing. Our research aims to

alleviate some of the remaining issues, with the long-term target of achieving

photo-realistic mixed-reality social interaction from a monocular video alone.
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Figure 1.3: Creating a virtual round table: the system synthesizes different
views of a person’s face, from a single front-facing camera.

1.2 Guiding Questions and Methodology

The primary goal of this study is to develop an efficient rendering method

and inference pipeline in order to leverage recent advances in neural ra-

diance fields for virtual reality video conferencing. We assume a standard

user setup with a monocular webcam with the objective of synthesizing a

different view for each participant in the video call as seen in figure 1.3.

In order to achieve real-time performance during inference without sacrific-

ing quality, we employ two different methods during training and inference.

During training - consisting of a short video sequence of an individual speak-

ing - we use a pre-trained deep residual network to accurately estimate the

head pose and facial expressions, supported by a 3D morphable face model.

At this point, we propose a change of the frame of reference to reduce the

magnitude of deformations, providing a basis for improved ray-sampling. In

the training stage, we construct a density field that indicates the maximum

5
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occupancy of a specific individual in space, across all expressions.

After obtaining a detailed neural avatar, we use a pre-trained light-weight

model to estimate a slightly less accurate head pose and facial expression.

These inaccuracies do not matter during inference, as participants in a video

call would not see the ground truth image - the sole purpose of the webcam

now is to identify the pose and expression. We use the previously constructed

density field to efficiently sample points in spaces that are actually occupied.

The solution is mostly implemented in PyTorch.

The second guiding question deals with the observation in current literature

and our work that certain deformations cause visual artifacts, including open-

ing and closing the mouth or eyes. We formalize these challenges by drawing

a link to topology, and discuss the expressiveness of a potential solution to

the problem.

1.3 Thesis Structure

This thesis has six chapters - the first, this one, contextualizes the problem

and provides a high-level methodological overview. The literature review in

chapter 2 then goes into more extensive detail of the research field, spanning

classical approaches from 2015 to the state of the art of Neural Radiance

Fields in August 2023.

In chapter 3, we introduce the reader to the required background knowledge

on computer graphics and NeRFs - covering camera models, rigid transfor-

mations, volumetric rendering and deformations.

Our contributions, discussed in chapter 4, are threefold:

• We analyze the performance bottlenecks in rigid and non-rigid settings,

6
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which motivates the emphasis on efficient point sampling and rendering

• With the help of priors, we introduce a training pipeline which normal-

izes the head pose.

First, we motivate the focus of this thesis by analyzing the performance

bottlenecks in rigid and non-rigid settings, to then address them in section

4.2 where we introduce priors into the training pipeline. Thirdly, we propose

improvements to the pipeline following inaccuracies in the automated head-

pose estimation.

We conclude the thesis with an outlook of promising remaining research

questions in chapter5, as well as as a critical evaluation of our studies and

its limitations in the final chapter 6. Here, we also elaborate on the societal

impact of the technology, with the hope of appealing to responsible AI and

policy researchers.
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2 | Literature Review

In general, the literature distinguishes between rigid and non-rigid recon-

struction, i.e. whether the captured scene is static or dynamic. The re-

search can be approximately categorized into classical and learning-based

approaches. Classical approaches typically rely on structured light, RGB-D

cameras [10], stereo cameras, structure-from-motion or multi-view camera

rigs. One of the notable works for mixed-reality social interaction using clas-

sical volumetric fusion from RGB-D observations is Holoportation [5].

Since 3D scanning is often under-constrained, especially in non-rigid settings,

learning-based approaches have a lot of potential. Some early work deals

with reconstructing a rigid 3D-voxel object from a single RGB image using

a trained recurrent neural network, such as 3D-R2N2 [11].

A lot of attention has been given to Neural Radiance Fields [12], which don’t

so much deal with 3D reconstruction, but rather with synthesizing images of

an object from novel perspectives. An MLP θ is trained to return the volume

density and color of a 3D point in space, conditioned on the viewing angle.

However, with training for a single scene taking up to days in the original

publication, significant work has gone into optimizing the fields. By split-

ting the NeRF into a view direction and position MLP, [13] can efficiently

cache many computations, achieving inference speeds of up to 200 FPS on

static scenes. While early methods rely on Fourier features as introduced

by [14], subsequent works aim at improving efficiency by building sparse

feature grids. Plenoxels [15] achieves improvements by entirely eliminating

neural components, and uses spherical harmonics in a sparse 3D grid that can

be optimized through gradient methods, with training times in the order of

8
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Figure 2.1: Multi-resolution hash encoding as implemented in Instant-NGP
[16]. Image from original publication.

magnitude of minutes instead of days. The next milestone in terms of perfor-

mance was reached with Instant-NGP [16] which achieved training times in

seconds by using density grids for efficient ray sampling and multi-resolution

hash encoding which stores trainable features to allow for a lighter network

architecture (figure 2.1). Using a hash table instead of a grid furthermore

reduced the memory requirements.

Using a hierarchical representation and learning compressed feature grids,

[17] achieves variable bitrates for progressive streaming of data, allowing to

adapt the amount of data accessed to render an image based on available

bandwidth. NeRFLight [18], another feature grid approach, splits a scene

into different regions with different decoders, but reusing the same features.

This allows them to achieve good performance with low memory require-

ments. Most of the research is done on high-end consumer GPUs; BakedSDF

[19] therefore aims at inference on commodity hardware using a method in-

volving classical 3D meshes combined with a view-dependent appearance

model to improve the performance. Other improvements have focused on

disentangling the lighting from the scene, allowing to train on images with

different lighting conditions, as well as render the image under different lights

9
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[20].

So far, all of these methods assumed calibrated images from multiple view-

points of a static scene, that is, none of the objects are changing or deforming

during captures. Not soon after the NeRF [12] publication, a separate branch

of research therefore starts dealing with the case of non-rigid scenes, typically

assuming fixed-length videos as input. Their objective is to synthesize novel

viewpoints of the video for any point in time. To do so, most publications

use variations of a deformation network introduced in D-NeRF [21], which

predicts the difference of any point x at time t to the initial frame. NeRFies

[22] improves robustness of the deformation by using elastic regularization of

the field. To address discontinuities in deformation fields, HyperNeRF [23]

increases the dimensionality of the space, taking inspiration from level set

methods. To constrain rigid regions from deformations, [24] uses an addi-

tional rigidity network to weight the deformation.

There is less research on performance improvements for non-rigid scenes as

for rigid ones, partially due to fewer known constraints that can be leveraged.

TiNeuVox [25] greatly improves the training time by introducing coarse-to-

fine time-aware voxel features, due to faster convergence. [26] in turn lever-

ages results from [16], adapting the density field (for efficient point sampling)

to non-rigid settings by taking the maximum occupancy across all time steps.

The performance gains depend on the extent of the deformations.

While these non-rigid methods focus on fixed-length videos, i.e. conditioning

the deformations on time, there has been an interest in conditioning the de-

formations on other variables such as human poses or facial expressions - thus

extending the applications beyond novel-view synthesis in videos. One of the

first controllable facial avatars was introduced by [27], which makes minor

10
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modifications to the original NeRF [12] architecture and does not use a defor-

mation network, but directly conditions the main network on the expression.

Both [28, 29] use human pose estimation to estimate the deformations and

learn a canonical representation of a person. [29] specifically targets novel

pose synthesis, but neither of the approaches aim for real-time performance.

RigNeRF [30] works on pose and expression control with novel view synthesis

using a 3DMM.

Recent Developments. The research field on neural radiance fields is de-

veloping quickly, and a lot of the research has advanced since the original

research proposal for this dissertation. While some of the new developments

have been taken into consideration, others have been too recent to update

this research. [31], published in SIGGRAPH 2023 on August 6, replaces the

NeRF with a Triplane encoder which learns features on orthogonal planes

for more efficient inference. The authors do not require a separate training

stage for each individual, and achieve real-time performance for novel-view

and pose synthesis. In this publication, results are also compared with Head-

NeRF [32] which uses NeRFs as proxies rather than for an underlying geo-

metric structure. HeadNeRF achieves similar results, but has a very different

methodology.

11



3 | Preliminaries

One of the reasons why neural radiance fields perform so well for novel view

synthesis is because they embed constraints from traditional computer graph-

ics into neural networks. And while the architectures of the networks often

remain very simple, a good understanding of camera models, transformations

and rendering concepts is required when working with NeRFs. We introduce

these fundamental concepts of computer graphics before going into the exact

functioning of the basic model architecture. We summarize some of the core

computer graphics concepts from [33] here, while adopting some simplified

notations.

3.1 Camera Model and Transformations

The representation of virtual environments on a 2D screen is crucial to com-

puter graphics, and takes inspiration from the pinhole camera model. In this

model, the light rays enter a closed box through a small hole, resulting in a

flipped image on the back side of the box as seen in figure 3.1.

The distance between the pinhole and the film is typically referred to as the

Figure 3.1: The pinhole camera model illustrates how an scene can be pro-
jected onto a screen. Image credits: TUM

12
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focal length f of the camera 1, and it corresponds to the length of the principal

ray - the ray which is orthogonal to the film (starting at the principal point)

and passes through the pinhole. The film (or image) plane has its origin

in the center of the image, whereas digital images traditionally have their

origin in the lower left corner. A translation therefore has to be applied

when projecting points to a digital image.

While in analog devices the film is placed behind the pinhole due to physical

limitations, in a virtual camera we can easily place the film before the pinhole,

resulting in an upright (but otherwise identical) image, as seen in figure ??.

In practice, we do not know the exact measurements of a camera. During

production of the camera there can be minor aberrations so that one cannot

fully rely on specification sheets, and would need to take the camera apart

in order to perform exact measurements. Since that is unfeasible, parame-

ters are determined through a camera calibration process, usually by taking

images of a checkerboard from different angles. When calibrating a camera,

we cannot determine the exact focal length, nor the sensor width and height.

However, we can determine fx = f · sx and fy = f · sy where sx, sy are the

sensor width and height respectively. The sensor dimensions are measured

in [pixels/mm]. Furthermore, the image plane of a camera might be skewed,

and is captured by the skew parameter γ during the calibration process. For

most modern cameras, this value will be negligibly zero.

3.1.1 World, Camera and Pixel Space

When working with coordinates in a virtual environment, there are three

commonly used frames of references. The first is the world space - this is the
1The term focal length is a bit of a misconception, as we do not really have a focal

point in the pinhole camera model due to the lack of lenses.
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P = (X, Y, Z)

z =
f

Camera
f3

f2

f1

y

x

v

u

(u, v)

u⃗

v⃗

principal
point

optical
axis

Figure 3.2: Camera frame of reference and the corresponding screen projec-
tion. Modified from [34]

global coordinate system, often using the earth as a frame of reference. We

denote the basis of this vector space as Bw = {e1, e2, e3}. The second is the

camera space with basis Bc = {f1, f2, f3} - here, the camera is the center and

points are described in relation to the camera. Finally, the pixel space is a

projection of points in the camera space on to the hyperplane spanned by

{f1, f2}.

If P = xf1 + yf2 + zf3 is a point in space, then z is the distance of P from

the camera, by the choice of the basis Bc. The principal point which lies on

the film has the coordinates (0, 0, f), with f being the focal length.

Switching between the two coordinate systems is simply achieved through a

change of basis. In computer graphics, the change of basis matrix E from Bw

to Bc is referred to as the camera extrinsic matrix and determines the posi-

tion and orientation of the camera. If Pw = [x, y, z, 1]T are the homogeneous

14
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coordinates of a point in the world space, Pc = EPw are the coordinates of

Pw in camera space. We discuss the construction of E in section 3.1.2.

The matrix to project a point Pc from the camera space to the screen is called

the camera intrinsic matrix K, and applying it gives us the pixel coordinates

(u, v):

K


xc

yc

zc

 =


fx γ mx

0 fy my

0 0 1



xc

yc

zc

 = zc


u

v

1

 . (3.1)

Similarly, adding a final zero column in K, if E is the camera extrinsic matrix

and P = xe1 + ye2 + ze3 = xcf1 + ycf2 + zcf3, then the pixel coordinates of

P are

KEP = K


xc

yc

zc

 = zc


u

v

1

 (3.2)

Note that this is a projection, and that multiple points are mapped to the

same coordinates (u, v). This line is referred to as a ray - an important

concept for rendering, since all the points2 along a ray will contribute towards

the color of one specific pixel.

3.1.2 Rigid Transformations

The rotation of a vector in 3D space can be expressed as the rotation around

each of the basis vectors. By convention in computer graphics [33], we first
2early termination aside
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rotate a point along the z, then the y and finally the x axis:

R = Rx(γ) ·Ry(β) ·Rz(α) (3.3)

where Rx, Ry, Rz ∈ R3×3 are the corresponding rotation matrices. The vector

v ∈ R3 when rotated is given by v′ = Rv, and when translated by t ∈ R3, it

is v′ = v + t. Both the rotation R and translation t can be expressed in a

single operation when extending v = [x, y, z]T to homogeneous coordinates:

v′ =

R t

0 1

 v =

R t

0 1

[
x y z 1

]T
(3.4)

3.2 3D-Morphable Face Models

Since human faces have common features, such as eyes, a nose and a mouth,

considerable research effort has gone into developing mesh priors of human

faces. As not every face is the same, these priors can be conditioned on a

latent space for head shape, as well as expression and texture. The Basel

Face Model (BFM) [35] for example relies on PCA bases. BFM consists of

two components S and T, corresponding to the shape and texture of a head:

S = S(α, β) = S̄ + Bidα + Bexpβ

T = T(δ) = T̄ + Btδ

where S̄, T̄ are the average face shape and textures, and Bid,Bexp and Bt

are the PCA bases of the face identity, expression and texture, controlled by
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the coefficients α ∈ R80, β ∈ R64, δ ∈ R80.

3.2.1 Reconstruction from Image

In practice, it can be useful to obtain the parameters of the 3D-morphable

face model of a specific individual from an image. This problem is addressed

by several works: In [36], a Resnet-50 architecture is used to predict identity,

expression, texture, head pose and lighting parameters.

3.3 Neural Radiance Fields

Neural radiance fields, short NeRF, are an approach to digitally capture

real-world scenes, similar to 3D reconstruction, from images alone. How-

ever, instead of computing a 3D polygonal mesh and texture which can then

be rendered, Neural Radiance Fields learn an implicit representation of the

scene, from which an image is computed.

The implicit representation models scene properties for any coordinate in

the space, within the observable bounds. In its most basic form, the function

models two properties: the volume density as well as the color at a given

point. Unlike physical density, high density values in the context of volumet-

ric rendering and computer graphics correspond to solid objects, while a low

density indicates empty space3. Sometimes, the term opacity is used instead

[37]4.

From this implicit representation that returns color and density values for

any point in space, an image can be computed. For each pixel in the screen,
3For the physicists among the readers, we consider air to be empty space.
4In classical volume rendering, opacity is more common, whereas in the context of

Neural Radiance Fields, volume density is used, adapting conventions set out by [12]
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a corresponding ray is cast into the scene along which we integrate over the

product of density and color values to compute the final pixel color.

A NeRF can be trained from a dataset of images with known camera poses.

Each batch consists of randomly selected rays from the pixels of the cameras

in the training data. The integral is approximated by sampling points along

each ray, and for each point, the neural radiance field computes corresponding

color and density values. The loss function is a total squared error between

the rendered and actual pixel value from the ground truth image.

The multi-view consistency of NeRFs, even for new poses, stems from the

observation that the density of any point is independent of the viewing angle.

Assume a point x is visible from n different cameras, then during training,

the predicted density of that point converges to a value that is coherent with

those n observations. When viewed from a new perspective, we still obtain

that exact same density value for x. However, we note here that a density

that is coherent with the observations in the training data does not have

to correspond to the real density at that point. This may be the case for

example when the training data only covers limited angles.

3.3.1 General Architecture

Formally, a NeRF is a differentiable function θ of the form

θ : Rdx × Rdd −→ R3 × R

x,d 7−→ c, σ

where x ∈ Rdx and d ∈ Rdd are encodings of the coordinates x ∈ R3 in space
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Figure 3.3: The original NeRF architecture consists solely of fully-connected
ReLU layers. Only the color values are conditioned on the viewing direction.
Credits: [12]

and the direction of the current ray d ∈ R3 (encodings for positional, direc-

tional and temporal features are explained in more detail in section 3.3.4).

In practice, θ is implemented as a multi-layer perceptron, and the color is

conditioned on the viewing direction to capture view-dependent effects such

as specularities. In the original implementation, eight fully-connected ReLU

layers are used to predict the density, followed by two additional layers to

predict the RGB color values, as seen in figure 3.3.

3.3.2 Rendering an Image

The ray r at pixel (u, v) is given by the camera intrinsic K and pose E

through inverse projection, and is bounded by the near and far plane camera

parameters tn, tf . The RGB radiance for this ray is then given by

C(r) =

ˆ tf

tn

T (t)σ(r(t))c(r(t),d)dt

where T (t) = exp(−
´ t
tn
σ(r(s))ds) is the accumulated transmittance [12].

This integral is numerical approximated through N finite samples along the

ray. σi and ci are the density and color values of sample i, and the density
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is weighted based on how far the next sample is away, i.e. δi = ti+1 − ti [12]:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, Ti = exp(−
i−1∑
j=1

σjδj).

3.3.3 Temporal and Expression Dependencies

So far, we have assumed that the scene is static, that is, that the visible

objects in the scene do not move or deform with respect to the global frame

of reference. This assumption has allowed us to restrict the problem of recon-

struction to four degrees of freedom. However, the previous architecture fails

once objects deform between captures, as there no longer exists a multi-view

coherence. This can be the case in certain videos, or, as targeted by this

thesis, for facial avatars.

As seen in the literature, a significant area of research focuses on temporal

dependencies, as the applications are more general. However, some of the

ideas can be trivially extended to conditioning the network on other factors,

such as facial expressions.

In the basic setting, as introduced by [21], the standard NeRF is extended

by an additional deformation module θd

θd : Rdx × Rdt −→ R3

x, t 7−→ ∆x

which predicts a translation vector ∆x given a coordinate and time encod-

ing. The purpose of this network is to predict how it needs to be deformed

so that it maps to a canonical space for a given point, and therefore acts

as a correspondence map. This approach is semi-supervised, as we have
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no ground-truth correspondence information, only the training images. To

ensure that predicted deformations are realistic they can be regularized to

ensure the deformation field primarily consists of rotations and translations,

and are note excessive in magnitude, for example by using a divergence and

offset loss [24].

3.3.4 Positional, Directional and Temporal Encodings

Spectral bias [38] is an effect observed with deep networks where the model

is biased towards learning low-frequency functions in the data. Assuming

a target function λ : Rd → R, an encoding γ : Rd → Rm and a solution

f : Rm → R, λ can be better generalized through f if the complexity of the

data manifold is increased through γ, i.e. such that λ = f ◦ γ.

The scenes that we attempt to reconstruct often contain many high-frequency

details - from fine textures to detailed geometry, especially for realistic facial

avatars. At the same time, the problem domain is low-dimensional, varying

only in the three positional coordinates, and potentially viewing direction

and time.

Neural networks - the basis of NeRFs - are unable to capture these high-

frequency details [14]. The researchers show that this is not just the case

for neural radiance fields, but other types of neural representations as well

such as images, relating to the earlier observation on spectral bias [38]. To

address this issue, they introduce a Fourier feature mapping to artificially

elevate the low dimensional input domain to a higher dimensional space:

γ : R3 −→ R3×L

x 7−→ (sin(20πx), cos(20πx), · · · , sin(2L−1πx), cos(2L−1πx))
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where L is a tunable hyperparameter denoting the number of frequencies

used. In the original NeRF publication [12], this encoding is used for both the

encoding of position and viewing direction, and several non-rigid adaptations

use Fourier encodings for time embeddings as well, such as [21, 25].

Other types of encodings.

One-blob encodings [39] are a generalization of one-hot encodings with k

bins, designed to extend their use to continuous variables as well. A Gaus-

sian distribution is applied with mean s (the variable we are encoding) and

discretized across k bins. This way, multiple adjacent entries can be activated

by the neural network. Some works use a one-blob encoding to increase the

dimensionality of the time parameter in non-rigid settings [26].

Parametric encodings have been used in more recent works, using additional

data structures to store learnable parameters in grid or tree structures [16].

Unfortunately, such approaches have a large memory footprint of complexity

O(n3) with respect to the scene size.

Multi-resolution hash encoding [16] builds on top of parametric encodings,

but replaces memory-intensive grids with a hash table. Using a spatial hash

function [16]

h(x) =
(
⊕d

i=1xiπi

)
mod T

where π1..d are large unique prime numbers, they map grid coordinates to a

table with up to T indices. For a point x ∈ R3, the hash encodings of the

closest grid points are interpolated, weighted by their distance to x.
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3.3.5 Performance Optimizations

A simple method to improve the speed of the model during both inference

and training is to use more efficient ray sampling. To generate an image, as

described in section 3.3.2, points are sampled along a ray - however, most of

these points are located in empty space and therefore do not contribute to

the final output.

In [16], ray marching is accelerated by constructing a discrete occupancy grid

around the (rigid) scene. A single bit denotes whether a given grid cell is

occupied in the scene or not. This occupancy grid is used and updated during

training. While this method significantly reduces training times (from hours

to seconds [16]), it is designed for static scenes.

[26] addresses this limitation for non-rigid scenes by taking the maximum

occupancy of a grid cell over the entire time frame. While this works well

for small deformations, the method is less effective when motions span the

entire scene, as most of the scene ends up marked as occupied.
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4 | Contributions and Results

In this chapter, we first motivate the the focus on efficient point sampling

along the rays by comparing the performance of different models. We use

this information in the following section to improve the efficiency of standard

architectures by using known priors. The final chapter is chronologically

intertwined with the development of the training and inference pipeline, but

is dedicated to addressing errors in camera pose estimation.

4.1 Understanding Performance Bottlenecks in

Non-Rigid Settings

As discussed in the literature review in chapter 2, very few prior works on

non-rigid NeRFs focus on performance improvements, resulting in signifi-

cantly slower inference times than their rigid counterparts - while Instant-

NGP achieves rates of 60 FPS in static settings [16], non-rigid networks per-

formed relatively poorly; that is, up until MoNeRF [26] claimed to achieve

"real-time" performance for novel view synthesis on fixed-length videos in

a Preprint in December 20221. This led to the original hypothesis that the

deformation network - which is evaluated separately for every sampled point,

is likely the main driver for the differences in training and inference speed.

Method. While there are surveys which compare order-of-magnitude per-

formance for the overall pipeline [40], to the best of our knowledge, there is

no research so far which analyzes the component-wise performance of neural

radiance fields. However, since the downstream task of video conferencing
1The code was not published until July 2023.
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has a hard real-time requirement with low latencies, we investigate the com-

ponents more closely.

We benchmark the forward step of three different architectures, Instant-NGP

[16] for rigid scenes as a baseline, TiNeuVox [25] for non-rigid scenes and

MoNeRF [26] for optimized non-rigid scenes.

Implementation Details. All models are tested on the Lego dataset, on

either the static [12] or the non-rigid version [21]. For Instant-NGP, we bench-

mark the PyTorch implementation [41] rather than the original C++/CUDA

implementation. As some of the code structures are rather different, we opt

for adding timers to the source code to benchmark the desired categories

rather than using a tracer. Some components may be run multiple times

for each image: here, we sum across each call for a single image, and com-

pute the mean and standard deviation across multiple images. The modified

repositories for benchmarking are included in the code base.

Results. We observe that while the deformation network does affect the

performance of the system, its impact is lower than anticipated. The ren-

dering stage (not considering MLP inference) in turn is significantly more

important than expected; TiNeuVox is more than two orders of magnitude

slower than the other two methods, not considering model queries.

In the case of MoNeRF, the deformation network only adds 4̃ ms to the

inference time.
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Figure 4.1: Average inference runtimes of different components in Instant-
NGP, TiNeuVox and MoNeRF (log scale). render.Raymarching : sampling
the points along the ray (e.g. knowing the occupancy, or just sampling
uniformly). render.Composite: compute the pixel color values from the raw
RGB and density information. render.Other : Python code, e.g. reshaping
tensors etc.

identifier Instant-NGP TiNeuVox MoNeRF
model.Canonical 7.711 45.267 7.24
model.Deformation N/A 32.921 4.255
model.Encoding N/A 17.224 4.716
render.Composite 0.235 1718.304 0.276
render.Other 15.022 67.137 7.079
render.Raymarching 0.687 62.324 1.367
renderImage (total) 25.705 1987.959 28.962

Table 4.1: Runtimes of the different architectural components.

4.2 Performance Improvements Through Known

Priors

While prior works have already dealt with facial avatars and novel pose

and expression synthesis, they do not focus on performance. And while

[26] achieves significant performance improvements in non-rigid settings by

adapting ray sampling techniques from [16], their method is restricted to

fixed-length videos.
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Keeping track of a density grid allows more efficient ray sampling, which in

turn results in lower inference times and more efficient compositing of the

samples, as discussed in 3.3.5. The optimizations in [26], i.e. taking the

maximum occupancy over time, would not work in our scenario: since we

have no prior information on where the head will be located in the scene, we

would need to set the occupancy to 1 everywhere. However, then we loose

all benefits of using one in the first place.

There are three things we can take advantage of. We know that the subject in

the scene is a human, we need to estimate the facial expression (to synthesize

novel views for the currently observed frame) and we want to remove the

background, since this would be undesirable in a virtual round table. Due to

the first two, we need to estimate the current head pose and facial expression

in any case, allowing us to reuse those computations for more efficient ray

sampling since we know where the person is located. Finally, removing the

background improves rendering times, as no ray sampling is required in that

area.

4.2.1 Method

In the preprocessing stage, a user captures a short video clip of themselves.

In this clip, the user rotates their head while speaking a few phrases. The

images are fed through a pre-trained ResNet-50 architecture [36] to obtain

the parameters of a 3DMM from which we extract the head pose and facial

expression parameters - the choice of this model results from observations

discussed in section 4.3. We remove the background using a pre-trained

image-segmentation model from MediaPipe [42].

While the expression parameters are stored as part of the dataset, we use
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Figure 4.2: Overview of the training pipeline.

the head pose estimation T ∈ R4×4 to fix and center the head. Using the

head as a frame of reference, we convert the head pose parameters to camera

extrinsic parameters (identical to the inverse, up to a correction term), which

are stored as part of the dataset. The method is illustrated in figure 4.2.

The dataset is captured by a standard webcam; we then scale the images

down to 224×224, as [36] is only trained on that image size. During training,

we use a density grid identical to [16, 26].

4.2.2 Results

We illustrate the computed virtual camera poses from the normalized head

pose in figure 4.3. The rays converge at the location of the normalized head

position, as the head is centered in this stage of the pipeline.

Due to the change of reference, our occupancy grid is sparse and does not

cover the entire motion path of the head, as illustrated in figure 4.4.
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Figure 4.3: Moving from a fixed-webcam to a head-frame of reference: The
blue rectangles are training images of the head in different poses, the red
lines indicate their viewing direction of the aligned virtual cameras.

Figure 4.4: Occupancy grid of the head. Despite varying poses, the occu-
pancy grid is sparse.
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Figure 4.5: Results from NVIDIA, August 2023. The method is not restricted
to human faces and only requires a single input view. Image from original
publication [31]

Inference with our model runs at around 19-20 FPS on an RTX 3090 GPU,

which is a bit slower than MoNeRF. This could be related to the process-

ing of the expression features which are larger than the dimension of the

time encoding in MoNeRF. Furthermore, the scene parameters are slightly

different between the synthetic MoNeRF scenes and our captured images.

Reparametrization might lead to small improvements.

Comparison with NVIDIA.

Our method requires the training of a NeRF for each person individually.

This also involves capturing a short video of the person speaking some phrases

while rotating their head. The recent work by NVIDIA [31], however, elimi-

nates the need for a training stage, simplifying the usage. They do not rely

on known priors, and can therefore adapt to different categories. Similarly,

they are not restricted to the pure head region, as seen in figure 4.5. Finally,

they achieve better performance (24 FPS) on the same hardware.

They rely on a pre-trained 3D-aware Generative Adversarial Network to train

an efficient encoder architecture. The image is rendered at 128× 128 pixels

instead of 224×224, and then uses a super-resolution network to upscale the

image to 512× 512.
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Figure 4.6: Using light-weight models for head-pose estimation is insufficient
despite using additional alignment algorithms, resulting in blurred outputs.
From left to right: ground truth, prediction, depth estimation, mask

4.3 Error Correction in Pose Estimation

While neural radiance fields rely on a multi-layer perceptron, that does not

mean that they are good at handling even small noise in the data. Due to

the hybrid nature of the approach, the system is very susceptible to camera

calibration errors. This is linked with the observation that the same physical

point will have two locations in the virtual space, as the rays of the cameras

do not intersect at the correct point. The network, learning a density value

for a given virtual point that corresponds to multiple physical points over

time due to misalignment, returns blurred density and color values.

Initially, we used MediaPipe [42] to estimate the face mesh for training. This

mesh differs from the BFM face model in the sense that it does not rely

on PCA of identity and expression, and therefore does not clearly separate

between the two. Combined with the fact that the light-weight model does

not always predict the geometry accurately, the result is a face mesh whose

geometry changes between each image.

The differences in geometry of the meshes lead to greater error terms when

aligning the point clouds. The resulting estimated camera poses are noisy as

well, leading to blurred reconstructions as seen in figure 4.6.

We therefore adopted two different pose estimation methods, one for training
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Figure 4.7: Using a 3DMM for head pose estimation is consistent in geometry,
but initially not in alignment. From left to right: ground truth, prediction,
depth estimation, mask

and another for inference. The latter continues to use MediaPipe for perfor-

mance reasons, but during training where low latency is not as important we

use the BFM 3DMM with parameter estimation through a Resnet-50 model

[36] as already foreshadowed in section 4.2.

However, the estimated head poses are still not entirely accurate. Let Tt ∈

R4×4 be the estimated head transformation matrix for time t, and Xt ∈ R4×n

be the set of n (static, e.g. forehead and ears) points of the face at time t

in homogeneous coordinates. If we had a perfect reconstruction, we should

have

Xcanonical = T−1
0 X0 = · · · = T−1

t Xt

However, this is not the case - again, due to slight offsets and leading to

blurred results as seen in figure 4.7.

We therefore compute an error correction term Et for all time steps t such

that

Xcanonical = T−1
0 X0 = E1T

−1
1 X1 = · · · = EtT

−1
t Xt

Since T−1
0 X0 is known, computing E1, ..., Et can be computed using singular

value decomposition. The resulting mesh-aligned camera extrinsic matrix -

EtT
−1
t Ecanonical, where Ecanonical are the camera extrinsics at time 0 - leads
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Figure 4.8: Manual alignment procedure applied to 3DMM head pose esti-
mation result. Validation data is sharper, and the depth estimation is more
consistent. From left to right: ground truth, prediction, depth estimation,
mask

to sharper results when rendering the neural avatar from new perspectives

or expressions, as seen in figure 4.8.
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5 | Future Work

The opportunities of the technology open up a variety of possible extensions

of this work. Firstly, as this project is application-focused, there are several

interesting questions related to neural rendering that should be addressed

when moving to a production setting; specifically concerning lighting and

the removal of VR headsets. We elaborate on these questions in more detail.

Secondly, we discuss some ideas for generalized performance improvements

that are not restricted to priors. VR video conferencing can benefit from

these as well, effectively extending the capabilities of the system beyond

faces - from upper body motion to bringing in objects that are shown in a

call.

5.1 Topological Neural Radiance Fields

Neural Radiance Fields, being based on neural networks, are well suited

for modeling continuous functions. High-frequency positional encoding was

introduced in [14] to ensure that abrupt changes in a small neighborhood, as

it often is the case with textures, could be reasonably well approximated by

continuous functions.

In non-rigid settings, the requirements for modeling large changes in small

neighborhoods may be less apparent. After all, most deformations are con-

tinuous. If you lift your arm, you do so continuously, if a person walks along

a path, that too is a continuous deformation.

So when, if at all, do we encounter discontinuities? This is the case with

very abrupt changes in the structure of the scene. Abrupt changes in this
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context can refer to breaking objects, or, as relevant to us, the opening of

a persons mouth. Current methods fail here due to the following intuitive

observations, considering a scene where an object is being broken apart:

• There is a point at which the deformation (from the canonical object)

is zero - points left of the point are being torn to the left, and points

right to it to the right

• The density of the points to the left and to the right are well defined,

and correspond to the density of the canonical mesh

• However, the density at the tearing points is not well defined.

If defining a topological space for every time step in a non-rigid scene, it

would intuitively make sense that NeRFs would only be able to model non-

rigid scenes where the set of these spaces is a topological equivalence class,

that is, there exists a homeomorphism between them. This is because NeRFs

are based on MLPs, which in turn means that they are naturally continuous.

It would be interesting to formalize the topology of non-rigid scenes, and

prove that current architectures are not fully expressive in cases of non-

homeomorphic changes in topology, as in the example described above.

In 2023, [43] proposed a novel topology of Neural Network layers, allow-

ing them to approximate and detect discontinuities. In a second stage, we

would be keen to investigate the impact such a framework could have on the

expressiveness of NeRFs, as well as implement and test such architectures.

5.2 Remaining Problems for Production Usage

Relighting. The current architecture does not disentangle lighting from the

scene, that is, it renders the person with the lighting that was present during
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Figure 5.1: NVIDA presents a proof of concept of AI mediated 3D Video
Conferencing at SIGGRAPH 2023, using results from [31]. Standardized
lighting and a virtual room which does not embed the avatars into a scene
reduces needs to relight the avatar. Image credits: NVIDIA

the training stage. This may not be too problematic in controlled setups

similar to the one of NVIDIA as seen in figure 5.1 - due to the standardized

lighting setup and the fact that the avatars just float in space reduces the

sense of unrealistic lighting conditions.

However, in practice, lighting quality can differ tremendously between par-

ticipants in a call. Furthermore, as soon as the neural avatars are embedded

into a virtual office space, the neural avatars will need to be relighted to

match the scene lighting.

Prior work in the field of lighting disentanglement has been done before as

discussed in section ??, however, more care is required to ensure accurate

color calibration between the participants as a collective. Minor color dis-

crepancies due to over-exposures or other factors become more noticeable

when compared side-by-side - as it would be the case here - than in single-

scene relighting tasks.

Issues when wearing a VR headset. In an actual virtual reality video

conferencing system, unless using a light field display, users will be wearing a

VR headset. These headsets cover significant portions of the face during the
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call, and need to be removed. Since during the inference stage, our system

only relies on facial expression detection, we do not need to worry about

removing the headset from the webcam image, as the NeRF deals with this

naturally. However, accurately capturing a persons’ expression including eye

motion is necessary, and may not always be possible unless the VR headset

is equipped with the necessary sensors itself.

Of course, further reducing the latency between webcam capture and ren-

dered neural avatar will always remain essential. Some (more general) ideas

on improving the performance for deformation predictions are discussed in

section 5.3.

5.3 Generalized Performance Improvements for

Deformations

While the performance improvements introduced in this thesis are application-

specific, we came across some ideas to improve the performance of the defor-

mation network in more general settings.

5.3.1 Sparse Grid Deformations and Dual Quaternion

Blending

In all works that we have come across, the deformation is computed for

each sampled point on the rays individually. However, if we assume that

neighboring points deform similarly, one might be able to leverage a sparser

representation of deformations.

Taking inspiration from the earlier classical work on non-rigid 3D recon-

struction, DynamicFusion [44], we propose to further investigate the usage of
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dual-quaternion blending for a set of dynamically changing set of deforma-

tion nodes. Both their non-linear blending capabilities and computational

efficiency could reduce the overhead of the current deformation networks.

In DynamicFusion, deformation nodes are added based on where they are

needed, and the warp function for arbitrary points xc is computed from the

neighboring deformation nodes:

DQB(xc) =

∑
k∈N(xc)

wk(xc)q̂kc

||
∑

k∈N(xc)
wk(xc)q̂kc||

where N(x) returns the k nearest transformation nodes of xc. The result can

be converted back to an SO(3) transformation matrix.

In the original DynamicFusion implementation, the idea of using a grid was

rejected due to memory efficiency issues [44]. This was due to the fact that

all transformations had to be stored in memory, unfeasible even for low res-

olution grids - 6 × 2563 parameters per frame for a voxel grid resolution of

256.

However, using a learning-based approach, we could train a deformation

network to predict the transformations conditioned on time - but only for

relevant sparse grid coordinates instead of for every sample. The exact trans-

formation for the individual samples could then be computed using dual

quaternion blending rather than inference on the deformation network.

5.3.2 Deformation Hash-Encoding

In practical settings, many deformations are similar: if a person lifts their

arm, then all points along the arm could be transformed using the same

transformation matrix. It may be worth investigating learning hash functions
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that map points with the same deformation to the same index.
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6 | Conclusion

6.1 Summary of Results

We have demonstrated the potential of neural radiance fields for the usage

in virtual reality video conferencing, both from a procedural perspective and

also by identifying and addressing bottlenecks. We observe that while the

deformation network does affect the performance of the system, the overhead

is negligible compared to that of an un-optimized rendering function. We use

this observation to create an optimal density grid given known priors - human

avatars, with which we can leverage efficient volume rendering techniques.

Our method can render novel views at approximately 20 FPS on consumer

GPUs.

6.2 Limitations

While our method performs well under extreme head poses due to our dif-

ferent choice of coordinate system, and achieves competitive speeds during

inference, our system comes with some limitations. Firstly, we have restricted

ourselves to novel-view and pose synthesis of the head from the start, not

considering the upper body or neck region. Just like other related works

that use NeRFs [27, 30], we also assume that hair is tied up or rigid with

respect to the head. Estimating the hair flow is a challenging task, especially

in real-time settings where a simulation engine might be required.

We must furthermore acknowledge the fact that our work is no longer state of

the art - the very recent work by NVIDIA [31] outperforms our results both

in terms of visual quality and performance. As their work was published on
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August 6, 2023, pivoting the thesis was no longer possible.

6.3 Ethical Considerations

Data Handling. Due to the nature of neural radiance fields, they do not

have to trained on larger datasets. Instead, they are retrained from scratch

for each scene individually. The person who we have captured the videos

with has consented to the usage of the images for this thesis, however, the

dataset will not be released to the public1.

Societal Impact. The research was conducted with the intent to improve

the quality of communication between people and further reduce the need for

travel. However, as with many technologies, our results could be misused.

We highlight potential issues so that they may be addressed by regulatory

bodies or research fields at the intersection of law or ethics with technology.

Specifically, our technology could facilitate impersonation. Using publicly

available images of a person, a neural avatar can be easily trained to then

be used in video conferencing systems. Anyone could join a video call with

their webcam and speak normally while the system renders the neural avatar

- the fake identity - with the real expressions corresponding to the speech.

This opens up entirely new array of attack possibilities, changing the way we

think about social engineering and fraud. Assuming continued improvement

in the technology, one such attack might look as follows: an attacker sched-

ules a meeting with a senior company employee, pretending to be a board

member. The employee might not be as suspicious as with phishing emails,

since this email is not requesting the person to download any files, or asking
1It is, however, included with the submission for reproducibility
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for personal or confidential information. The call is taking place through a

video calling platform trusted by the company, so again, no reason for the

employee to become suspicious. Then the virtual meeting takes place - the

(fake) board member joins the call, and after exchanging pleasantries, the

attacker starts asking the employee about current status updates from the

team for a supposedly upcoming board meeting. The employee - having at

the very least seen the board member before - trusts the neural avatar of the

board member and reveals confidential information, never questioning the

authenticity of the person because they see a live video of them.

This attack may look very similar for phishing, making such attacks seem

significantly more trustworthy. Whether it is a friend or family member being

stuck abroad needing money - once we set up a call with them and see them

"live", why would most people doubt that this is a fake?

We will require new ways of ensuring trust with these technologies. Unfor-

tunately, since the neural rendering solution for facial avatars can be fed

into any existing video conferencing as a virtual webcam, it is unlikely that

platforms such as Zoom, Google Meet or Microsoft Teams will be able to

detect such scams out of the box. One potential solution is inspired by a

similar issue observed with deep fakes in journalism. Certain manufacturers

have created cameras that cryptographically sign the photograph, allowing

people to verify that the image was actually captured and not generated.

Webcam manufacturers could similarly sign the outgoing video feed - signa-

tures that common video conferencing platforms could verify to ensure the

authenticity.
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